Multiple hot-carrier collection in photo-excited graphene Moiré superlattices
نویسندگان
چکیده
In conventional light-harvesting devices, the absorption of a single photon only excites one electron, which sets the standard limit of power-conversion efficiency, such as the Shockley-Queisser limit. In principle, generating and harnessing multiple carriers per absorbed photon can improve efficiency and possibly overcome this limit. We report the observation of multiple hot-carrier collection in graphene/boron-nitride Moiré superlattice structures. A record-high zero-bias photoresponsivity of 0.3 A/W (equivalently, an external quantum efficiency exceeding 50%) is achieved using graphene's photo-Nernst effect, which demonstrates a collection of at least five carriers per absorbed photon. We reveal that this effect arises from the enhanced Nernst coefficient through Lifshtiz transition at low-energy Van Hove singularities, which is an emergent phenomenon due to the formation of Moiré minibands. Our observation points to a new means for extremely efficient and flexible optoelectronics based on van der Waals heterostructures.
منابع مشابه
Ultrafast hot-carrier-dominated photocurrent in graphene.
The combination of its high electron mobility, broadband absorption and ultrafast luminescence make graphene attractive for optoelectronic and photonic applications, including transparent electrodes, mode-locked lasers and high-speed optical modulators. Photo-excited carriers that have not cooled to the temperature of the graphene lattice are known as hot carriers, and may limit device speed an...
متن کاملUniversal classification of twisted, strained and sheared graphene moiré superlattices
Moiré superlattices in graphene supported on various substrates have opened a new avenue to engineer graphene's electronic properties. Yet, the exact crystallographic structure on which their band structure depends remains highly debated. In this scanning tunneling microscopy and density functional theory study, we have analysed graphene samples grown on multilayer graphene prepared onto SiC an...
متن کاملCharge transport through one-dimensional Moiré crystals
Moiré superlattices were generated in two-dimensional (2D) van der Waals heterostructures and have revealed intriguing electronic structures. The appearance of mini-Dirac cones within the conduction and valence bands of graphene is one of the most striking among the new quantum features. A Moiré superstructure emerges when at least two periodic sub-structures superimpose. 2D Moiré patterns have...
متن کاملGate-dependent pseudospin mixing in graphene/boron nitride moire superlattices
Electrons in graphene are described by relativistic Dirac–Weyl spinors with a two-component pseudospin1–12. The unique pseudospin structure of Dirac electrons leads to emerging phenomena such as the massless Dirac cone2, anomalous quantum Hall e ect2,3, and Klein tunnelling4,5 in graphene. The capability to manipulate electron pseudospin is highly desirable for novel grapheneelectronics, and it...
متن کاملUltrafast Lateral Photo-Dember Effect in Graphene Induced by Nonequilibrium Hot Carrier Dynamics.
The photo-Dember effect arises from the asymmetric diffusivity of photoexcited electrons and holes, which creates a transient spatial charge distribution and hence the buildup of a voltage. Conventionally, a strong photo-Dember effect is only observed in semiconductors with a large asymmetry between the electron and hole mobilities, such as in GaAs or InAs, and is considered negligible in graph...
متن کامل